Simultaneous measurement of genetics and epigenetics enables new biological insight
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1. Introduction

There is more to DNA than A, C, G and T. Epigenetics plays a causal role in cell fate,
ageing and disease development. Methylated cytosines, such as 5mC and 5hmC,
represent important biomarkers and are informally considered the 5th and 6th letters

in the genetic alphabet.

Genetic and methylation data together on the same

read allow us to get a more complete picture of
genome biology. Constrained to measuring four
states of information, existing NGS-based

3. Allele Specific Methylation (ASM)

Having both genetic and epigenetic information on the same read
allows us to assign reads to haplotypes with high accuracy. We can
therefore identify regions of allele specific methylation without
many of the assumptions of models that rely on deamination based
methods. Reads are assigned to haplotypes based on observing
either allele of a heterozygote (called by GATK HaplotypeCaller).

a ASM detection

Reference

left: Schematic of ASM detection.
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5. Transient reprogramming of fibroblasts

At the cellular level, ageing is associated with reduced

function, altered gene expression and a perturbed Two independent donors @
epigenome (Horvath 2013). Recent work has demonstrated

that the epigenome and some elements of function are l
rejuvenated by the maturation phase of iPSC
reprogramming, without loss of cell identity.
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Here we apply the Gill et al. (2022) “maturation
phase transient reprogramming” (MPTR), where
reprogramming factors (OSKM) are expressed until
the rejuvenation point and then withdrawn. We use
the novel +modC technology to investigate genetic
and epigenetic changes after transient

Above: Summary of experimental design. NC: untreated controls, TR:
Successful Transient Reprogramming, FTR: Failed transient reprogramming.

duet multiomics solution +modC is a new sequencing technology that derives all four

alternative hypothesis of ASM in
genetic bases without ambiguity in C or T calls, plus epigenetic modified cytosine (modC.)

reprogramming.
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